

ASCOM ASYNCHRONOUS

INTERFACES
Proposal Version 1

Peter Simpson, Bob Denny, Daniel Van Noord

Version 1 – 18th June 2023 1

Contents

1 Context .. 3

1.1 Definition of Long-running .. 3

2 Methods common to all interfaces .. 3

2.1 Interface Changes ... 3

2.1.1 New Connect() and Disconnect() methods ... 3

2.1.2 New DeviceState property .. 4

2.2 Documentation Changes ... 4

3 Camera Interface .. 4

3.1 Documentation Changes ... 4

4 CoverCalibrator Interface .. 5

4.1 Interface Changes ... 5

4.1.1 New CalibratorChanging completion property ... 5

4.1.2 New CoverMoving completion property .. 5

4.2 Documentation Changes ... 5

5 FilterWheel Interface .. 5

5.1 Documentation Changes ... 5

6 Focuser Interface .. 5

6.1 Documentation changes ... 5

7 ObservingConditions Interface .. 6

7.1 Documentation Changes ... 6

8 Rotator Interface .. 6

8.1 Documentation Changes ... 6

9 Telescope Interface .. 6

9.1 Documentation Changes ... 6

10 Video Interface ... 7

10.1 Documentation Changes ... 7

Appendix 1 - New DeviceState Property ... 8

1 Context .. 8

2 Use Cases ... 8

3 DeviceState Behaviour .. 8

3.1 Devices .. 8

3.2 Client Applications .. 8

4 Time Stamps ... 8

5 DeviceState Interface Definition.. 9

5.1 IStateValue Interface .. 9

5.2 COM Interface Definition .. 9

Version 1 – 18th June 2023 2

5.3 Alpaca Interface Definition ... 9

6 Operational Properties ... 10

7 Client Toolkit Support ... 12

7.1 The DeviceState Class ... 12

7.1.1 Nullable Property Behaviour ... 12

7.2 DeviceState Property Operation ... 12

7.3 Telescope Device State Example ... 12

Version 1 – 18th June 2023 3

Interface Changes for Async Operation
1 Context
Growing use of the network-based Alpaca protocol has highlighted the synchronous behaviour of

some interface members where it can take several seconds or minutes before a completion

response is sent to the client.

This paper describes documentation and technical changes to the ASCOM interfaces to ensure that

asynchronous operation is specified for all long-running operations. Wherever possible the

behavioural requirements of existing interface members have been revised to minimise the number

of new interface members required.

On slow or unreliable networks, Alpaca can be subject to latency and bandwidth issues when

applications regularly poll multiple device operational state properties. To address these concerns a

new DeviceState property will be added to every interface that returns all device operational

properties in one call. Please see Appendix 1 for details of the device properties that will be returned

by this call.

As a result of these changes all device interface version numbers will be increased by 1.

1.1 Definition of Long-running
For the purposes of this paper operations are considered to be long running if they are likely to take

more than 1 second to complete at the device.

2 Methods common to all interfaces

2.1 Interface Changes

2.1.1 New Connect() and Disconnect() methods
The current Connected property is synchronous in operation and some hardware can take several

seconds to initialise, leaving applications “hanging”, waiting for the property to return control to the

application. Given the greater emphasis now placed on responsive UIs, we are introducing an

asynchronous connection mechanic to every device interface.

The new mechanic is implemented with two new initiator methods that must return quickly having

started the required operation:

public void Connect() { }
public void Disconnect() { }

In addition, we will add a new Connecting property that applications can poll to determine when
the connection / disconnection operation has completed:

public bool Connecting { get; }

Introducing the Connecting property will ensure a clear separation between the roles of state value

(Connected) and operation status (Connecting) and will ensure maximum backward compatibility

with current applications.

The Connected property setter will be retained, and must be implemented, to ensure backward
compatibility with current applications.

Version 1 – 18th June 2023 4

2.1.2 New DeviceState property
The DeviceState property will return all operational properties of the device in a single call to
reduce latency and network traffic when clients poll for device state. Please see Appendix 1 for
further rationale and implementation details.

public ArrayList DeviceState { get; }

The ArrayList type is used to ensure compatibility with COM clients and devices.

Each DeviceState element is a class that implements IStateValue, which defines two properties:

public string Name { get; }
public object Value { get; }

2.2 Documentation Changes
Action method: This will remain a synchronous method. However, documentation will be added to

describe best practice for implementing long-running operations. i.e. to use a short lived initiator

Action and a second Action that can be polled to determine the state of the long-running operation.

3 Camera Interface

3.1 Documentation Changes
StartExposure & StopExposure: These will be defined as asynchronous with ImageReady as the
completion variable.

SetCCDTemperature: A note will be added that this method should be short-lived because it is only

expected to ‘set’ the new set point and must not block until the set point has been reached.

PulseGuide: This will be clearly defined as asynchronous using the existing IsPulseGuiding
property as the completion variable.

ImageArray: This will remain synchronous but with an additional note saying that applications

should be prepared for ImageArray to take some time to return when large images are being

retrieved.

In addition, the word safearray will be deleted from the ImageArray title and a remark will be added

that C++ driver developers should return a safearray.

A further remark will be added noting the improvement in Alpaca image retrieval times when using

the ImageBytes mechanic.

ImageArrayVariant: The ImageArrayVariant property is a functional duplicate of the ImageArray

property but returns data using the variant type, which requires more memory and processor

resource than the Int32 type returned by ImageArray.

ImageArrayVariant was included in the ASCOM interface to support scripting languages that

required data elements to be of variant type rather than as integer type. However, this restriction no

longer applies and the ImageArrayVariant property is now redundant.

The ImageArrayVariant method will be retained in the Camera interface but will be marked as

deprecated in favour of ImageArray.

A remark will be added saying that applications should be prepared for ImageArrayVariant to take

some time to return when large images are being retrieved. In addition, the word safearray will be

deleted from the ImageArray title and a remark will be added that C++ driver developers should

return a safearray.

https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/variant-data-type

Version 1 – 18th June 2023 5

A further remark will be added noting the improvement in Alpaca image retrieval times when using

the ImageBytes mechanic.

4 CoverCalibrator Interface

4.1 Interface Changes
Currently this interface doesn’t have separate properties to undertake the state and status roles.

Instead, it uses multi-purpose enum state/status properties that combine these functions. Using this

approach it is possible to report an error state but it is not possible to return a message indicating

the nature of the issue.

To address this, pollable boolean completion variables will be added for cover and calibrator

operations that can return text error descriptions through exceptions / errors when necessary.

4.1.1 New CalibratorChanging completion property
We will add a new boolean completion variable CalibratorChanging that returns true while the
calibrator is in the “not ready / changing” state during the CalibratorOn and CalibratorOff
operations.

 public bool CalibratorChanging { get; }

The CalibratorStatus.NotReady state documentation will be updated to add that it must be kept
in sync with CalibratorChanging.

4.1.2 New CoverMoving completion property
Add a new boolean completion variable CoverMoving that returns true while the cover is in motion
when the OpenCover or CloseCover operations are underway.

public bool CoverMoving { get; }

The CoverStatus.Moving state documentation will be updated to add that it must be kept in sync

with CoverMoving.

4.2 Documentation Changes
CalibratorStatus and CoverStatus: New notes will say that these properties must not throw

exceptions / return errors.

HaltCover: A note will be added saying that this is expected to be a short-lived synchronous call.

5 FilterWheel Interface

5.1 Documentation Changes
Position Set: The Position property setter will be explicitly defined as being asynchronous with the

Position property getter as the operation’s completion property.

6 Focuser Interface

6.1 Documentation changes
Move: Move will be defined as asynchronous with IsMoving as the operation’s completion property.

Halt: A note will be added that Halt must be a short-lived synchronous call.

Link: The Link property will be clearly marked as deprecated.

Version 1 – 18th June 2023 6

7 ObservingConditions Interface

7.1 Documentation Changes
Refresh: A note will be added to specify that Refresh must be a short synchronous call that triggers
a refresh and that it must not wait for long running processes to complete. It will be a client
responsibility to poll TimeSinceLastUpdate to determine whether / when the data is refreshed.

8 Rotator Interface

8.1 Documentation Changes
Move, MoveAbsolute, MoveMechanical: These methods will be defined as asynchronous with
IsMoving as their completion variable.

9 Telescope Interface

9.1 Documentation Changes
FindHome: FindHome will be clearly defined as asynchronous noting that some drivers have been
asynchronous for a long time and that apps have always needed to support this behaviour.

These notes will be added to the FindHome definition:

• Slewing must be set true while finding home.

• FindHome and AtHome must throw not implemented exceptions if CanFindHome is false.

Park: Park will be clearly defined to be asynchronous noting that some drivers have behaved

asynchronously for a long time and that apps have always needed to support this behaviour.

These notes will be added:

• Slewing must be set true while parking.

• Park and AtPark must throw not implemented exceptions if CanPark is false.

SideofPier Set: This is already defined as asynchronous and the description will be expanded to

make this even more clear.

PulseGuide: This is already defined as asynchronous and the description will be expanded to make

this even more clear.

SlewToTarget: This synchronous method will be deprecated in favour of its asynchronous

counterpart.

SlewToCoordinates: This synchronous method will be deprecated in favour of its asynchronous

counterpart.

SlewToAltAz: This synchronous method will be deprecated in favour of its asynchronous

counterpart.

CanSlew and CanSlewAsync: These will be revised to deal with the deprecated synchronous

methods and to note that they must now be tied together.

CanSlewAltAz and CanSlewAltAzAsync: These will be revised to deal with the deprecated

synchronous methods and to note that they must now be tied together.

Version 1 – 18th June 2023 7

Unpark: Unpark will be clearly defined to be asynchronous noting that some drivers have operated

asynchronously for a long time and that apps have always needed to support this behaviour.

These notes will be added:

• Slewing must be set true while unparking to act as the completion variable, even if the

telescope is not moving.

10 Video Interface
By agreement with the original author this interface will be marked as deprecated.

10.1 Documentation Changes
StartRecording and StopRecording: Make clear that these are asynchronous using CameraState as

the completion variable.

Version 1 – 18th June 2023 8

Appendix 1 - New DeviceState Property

1 Context
Many ASCOM properties provide information about current device state and fall into two categories:

• Configuration information – These are set prior to an operation commencing and stay fixed

for the lifetime of an operation such as Camera.BinX and Telescope.SiteLatitude

• Operational information – These change while an operation is in progress such as

Telescope.RightAscension, Focuser.Position and ObservingConditions.WindGust

The DeviceState property will return all the device’s operational property values in a single call to

reduce latency and network bandwidth. Configuration information is not included because this is

either set and known by the application or can be read once at the beginning of an operation.

2 Use Cases
The DeviceState property is intended to improve ASCOM Interface support for two primary use

cases:

• Status reporting in client user interfaces

• Progress monitoring for processes initiated by the client.

3 DeviceState Behaviour
From both the client’s and the device’s perspective, DeviceState is a “best endeavours” call. This is

to ensure that the maximum amount of available data is returned by the device to the client.

3.1 Devices
A device must return all operational values that it definitively knows but can omit entries where

value are unknown. Devices must not throw exceptions / return errors when values are not known.

An empty list must be returned if no values are known.

3.2 Client Applications
Applications must expect that, from time to time, some operational state values may not be present

in the device response and must implement a strategy to deal with such “missing” values.

4 Time Stamps
An optional string TimeStamp property will be defined so that the device can record the time at
which the state was measured, if known. The ISO-8601 time format must be used to report:

• An unqualified local time.

• A local time including a time offset.

• A UTC time using the Z time-zone designator.

Version 1 – 18th June 2023 9

5 DeviceState Interface Definition
The COM and Alpaca interfaces are functionally equivalent and return an enumerable collection of
IStateValue objects.

5.1 IStateValue Interface
The IStateValue interface is defined as follows:

public interface IStateValue
{

string Name { get; }
object Value { get; }

}

5.2 COM Interface Definition
The ASCOM COM driver interface definition is:

public ArrayList DeviceState { get; }

The ArrayList type is used to ensure compatibility with COM clients and devices and provides an
enumerable list of IStateValue objects.

Each ArrayList element must be a COM registered class that implements the IStateValue interface
and exposes two properties:

public string Name { get; }
public object Value { get; }

IStateValue.Name is the name of an operational property. The name is case sensitive and must
match the property name’s spelling and casing in the ASCOM interface specification.

The IStateValue.Value property has the object type so that it can accept any type including the
types commonly used in ASCOM interfaces such as int16, int32, double, string and enum. This
approach avoids localisation complexities when transferring numeric and bool types.

5.3 Alpaca Interface Definition
The Alpaca device response uses the standard Alpaca message structure consisting of Value,

ClientTransactionID, ServerTransactionID, ErrorNumber and ErrorMessage keys. The

content of the Value key is a JSON array of IStateValue objects with Name and Value keys defined

identically to those in the COM interface.

Here is a formatted example of a Camera DeviceState Alpaca JSON response:

{

"Value":[

{"Name":"CameraState","Value":0},

{"Name":"CCDTemperature","Value":10},

{"Name":"CoolerPower","Value":0},

{"Name":"HeatSinkTemperature","Value":10},

{"Name":"ImageReady","Value":false},

{"Name":"IsPulseGuiding","Value":false},

{"Name":"PercentCompleted","Value":0},

{"Name":"TimeStamp","Value":"2023-06-14T11:17:50.0Z"}

],

"ClientTransactionID":123,

"ServerTransactionID":456,

"ErrorNumber":0,

"ErrorMessage":""

}

Version 1 – 18th June 2023 10

6 Operational Properties
The following properties will be returned by the DeviceState property:

Interface DeviceState Name Comment

ICamera CameraState

 CCDTemperature

 CoolerPower

 HeatSinkTemperature

 ImageReady

 IsPulseGuiding

 PercentCompleted

 TimeStamp Time of status, if known, in ISO 8601 format.

ICoverCalibrator CalibratorState

 CoverState

 CalibratorReady

 CoverMoving

 TimeStamp Time of status, if known, in ISO 8601 format.

IDome Altitude

 AtHome

 AtPark

 Azimuth

 ShutterStatus

 Slewing

 TimeStamp Time of status, if known, in ISO 8601 format.

IFilterWheel Position

 TimeStamp Time of status, if known, in ISO 8601 format.

IFocuser IsMoving

 Position

 Temperature

 TimeStamp Time of status, if known, in ISO 8601 format.

IObservingConditions CloudCover

 DewPoint

 Humidity

 Pressure

 RainRate

 SkyBrightness

 SkyQuality

 SkyTemperature

 StarFWHM

 Temperature

 WindDirection

 WindGust

Version 1 – 18th June 2023 11

 WindSpeed

 TimeStamp Time of status, if known, in ISO 8601 format.

IRotator IsMoving

 MechanicalPosition

 Position

 TimeStamp Time of status, if known, in ISO 8601 format.

ISafetyMonitor isSafe

 TimeStamp Time of status, if known, in ISO 8601 format.

ISwitch GetSwitch0 (Assumes that the number of available

 GetSwitch1 switches (N) has already been determined by

 GetSwitch2 the application)

 …

 GetSwitchN

 GetSwitchValue0

 GetSwitchValue1

 GetSwitchValue2

 …

 GetSwitchValueN

 TimeStamp Time of status, if known, in ISO 8601 format.

ITelescope Altitude

 AtHome

 AtPark

Azimuth
Declination

 IsPulseGuiding

 RightAscension

 SideOfPier

 SiderealTime

 Slewing

 Tracking

 UTCDate

 TimeStamp Time of status, if known, in ISO 8601 format.

IVideo

Interface deprecated - no change

Version 1 – 18th June 2023 12

7 Client Toolkit Support
As a convenience for application developers all ASCOM client toolkit devices will provide an

additional property that presents the device’s DeviceState response as a class. The name of the

additional property will follow the format: {DeviceType}DeviceState where {DeviceType} is

Camera, Telescope etc. e.g. CameraDeviceState and TelescopeDeviceState.

The signature of these additional properties will be:

public {DeviceType}DeviceState {DeviceType}DeviceState { get; }

7.1 The DeviceState Class
Within the ASCOM device interfaces all operational information values are defined using value

types, which do not allow an “unknown” state to be represented. To address this the

{DeviceType}DeviceState classes will expose nullable value types so that the client can detect the

“unknown” state in addition to the property’s actual value if available.

7.1.1 Nullable Property Behaviour
Using the telescope device AtPark property as an example, if the device returns a value for the

AtPark property:

• TelescopeDeviceState.AtPark.HasValue will return true.

• TelescopeDeviceState.AtPark will return the value.

• TelescopeDeviceState.AtPark.Value will return the value.

If the device does not return a value for the AtPark property:

• TelescopeDeviceState.AtPark.HasValue will return false.

• TelescopeDeviceState.AtPark will return null.

• TelescopeDeviceState.AtPark.Value will throw an exception.

7.2 DeviceState Property Operation
When the client gets the {DeviceType}DeviceState property the toolkit will:

• Create a response class with all property values set to null.

• Call the device’s DeviceState property.

• Populate the response class’s properties with the information returned by the device.

This approach ensures that any operational properties that the device does not return will have

null values in the response class representing the “unknown” state.

Please note that the {DeviceType}DeviceState class instance data is immutable. To obtain

updated information from the device read the toolkit {DeviceType}DeviceState property again.

7.3 Telescope Device State Example
This is the definition of the class returned by DriverAccess’s TelescopeDeviceState property:

 public class TelescopeDeviceState : ITelescopeDeviceState
 {
 public TelescopeDeviceState() { } // Other initiators omitted for clarity

 public double? Altitude { get; private set; } = null;

 public bool? AtHome { get; private set; } = null;

 public bool? AtPark { get; private set; } = null;

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/nullable-value-types

Version 1 – 18th June 2023 13

 public double? Azimuth { get; private set; } = null;

 public double? Declination { get; private set; } = null;

 public bool? IsPulseGuiding { get; private set; } = null;

 public double? RightAscension { get; private set; } = null;

 public PierSide? SideOfPier { get; private set; } = null;

 public double? SiderealTime { get; private set; } = null;

 public bool? Slewing { get; private set; } = null;

 public bool? Tracking { get; private set; } = null;

 public DateTime? UTCDate { get; private set; } = null;

 public DateTime? TimeStamp { get; private set; } = null;
 }

